如图,直角梯形纸片ABCD中,AD∥BC,∠A=90°,∠C=30°.折叠纸片使BC经过点D.点C落在点E处,BF是折痕,且BF=" CF" =8.(l)求∠BDF的度数;(2)求AB的长.
如图,在四边形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC于E,AF⊥DF于F,△BEA旋转后能与△DFA重叠.⑴△BEA绕_______点________时针方向旋转_______度能与△DFA重合;⑵若AE=cm,求四边形AECF的面积.
已知关于x的方程x2-2(k-1)x+k2=0有两个实数根x1,x2.⑴求k的取值范围;⑵若|x1+x2|=x1x2-1,求k的值.
先化简,再求值,其中a=1-,b=1+.
如图,在直角坐标系中,已知点A(0,2),点B(-2,0),过点B和线段OA的中点C作直线BC,以线段BC为边向上作正方形BCDE.(1)填空:点D的坐标为 ,点E的坐标为 ;(2)若抛物线y=aa2+ba+c(a≠0)经过A,D,E三点,求该抛物线的解析式;(3)若正方形和抛物线均以每秒个单位长度的速度沿射线BC同时向上平移,直至正方形的顶点E落在y轴上时,正方形和抛物线均停止运动.① 在运动过程中,设正方形落在y轴右侧部分的面积为s,求s关于平移时间t(秒)的函数关系式,并写出相应自变量t的取值范围;② 运动停止时,请直接写出此时的抛物线的顶点坐标.
如图,在矩形ABCD中,AB=4,AD=5,P是射线BC上的一个动点,过点P作PE⊥AP,交射线DC于点E,射线AE交射线BC于点F,设BP=a.(1)当点P在线段BC上时(点P与点B,C都不重合),试用含a的代数式表示CE;(2)当a=3时,连结DF,试判断四边形APFD的形状,并说明理由;(3)当tan∠PAE=时,求a的值.