在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.(1)从A、D、E、F四点中任意取一点,以所取的这一点及点B、C为顶点画三角形,则所画三角形是等腰三角形的概率是 .(2)从A、D、E、F四点中先后任意取两个不同的点,以所取的这两点及B、C为顶点画四边形,求所画四边形是平行四边形的概率.(用树状图或列表法求解)
已知二次函数. (1)用配方法求其图象的顶点C的坐标,并描述改函数的函数值随自变量的增减而增减的情况; (2)求函数图象与x轴的交点A,B的坐标,及△ABC的面积.
在一个口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.小明和小强采取了不同的摸取方法,分别是: 小明:随机抽取一个小球记下标号,然后放回,再随机地摸取一个小球,记下标号; 小强:随机摸取一个小球记下标号,不放回,再随机地抽取一个小球,记下标号. (1)用画树状图(或列表法)分别表示小明和小强摸球的所有可能出现的结果; (2)分别求出小明和小强两次摸球的标号之和等于5的概率.
如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°. (1)求证:CD是⊙O的切线; (2)若⊙O的半径为2,求图中阴影部分的面积.
计算:
(1)解方程: (2)解方程组: