标有-3,-2,4的三张不透明的卡片,除正面写有不同的数字外,其余的值都相同,将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记为一次函数解析式y=kx+b的k值,第二次从余下的两张卡片中再抽取一张,上面标有的数字记为一次函数解析式的b值.求一次函数y=kx+b的图象不经过第三象限的概率.(用树状图或列表法写出分析过程)
解下列方程(每小题5分,共10分) ①.②
计算下列各题(每小题5分,共10分) ① ②
如图1,已知直线的解析式为,它与轴、y轴分别相交于A、B两点.点C从点O出发沿OA以每秒1个单位的速度向点A匀速运动;点D从点A出发沿AB以每秒1个单位长的速度向点B匀速运动,点C、D同时出发,当点C到达点A时同时停止运动.伴随着C、D的运动,EF始终保持垂直平分CD,垂足为E,且EF交折线AB-BO-AO于点F. (1)直接写出A、B两点的坐标; (2) 设点C、D的运动时间是t秒(t>0). ①用含t的代数式分别表示线段AD和AC的长度; ②在点F运动的过程中,四边形BDEF能否成为直角梯形?若能求t的值;若不能,请说明理由.(可利用备用图解题)
如图,平面直角坐标系中,矩形的顶点在原点,点在轴的正半轴上,点在轴的正半轴上.已知,,是的中点,是的中点. (1)分别写出点、点的坐标; (2)过点作交轴于点,求点的坐标; (3)在线段上是否存在点,使得以点、、为顶点的三角形是等腰三角形,若存在,求出点的坐标;若不存在,请说明理由.
如图,等腰△中,,是上一点,且. (1)试说明:△∽△; (2)若,,求的长; (3)若,求的度数.