如图, 已知边长为2的的菱形与菱形全等,且,平面平面,点为的中点.(Ⅰ)求证:平面;(Ⅱ)求证:;(Ⅲ)求三棱锥的体积.
设各项都是正整数的无穷数列满足:对任意,有.记.(1)若数列是首项,公比的等比数列,求数列的通项公式;(2)若,证明:;(3)若数列的首项,,是公差为1的等差数列.记,,问:使成立的最小正整数是否存在?并说明理由.
设函数,.(1)解方程:;(2)令,,求证:(3)若是实数集上的奇函数,且对任意实数恒成立,求实数的取值范围.
已知椭圆的右焦点为,短轴的端点分别为,且.(1)求椭圆的方程;(2)过点且斜率为的直线交椭圆于两点,弦的垂直平分线与轴相交于点.设弦的中点为,试求的取值范围.
某公司承建扇环面形状的花坛如图所示,该扇环面花坛是由以点为圆心的两个同心圆弧、弧以及两条线段和围成的封闭图形.花坛设计周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为米(),圆心角为弧度.(1)求关于的函数关系式;(2)在对花坛的边缘进行装饰时,已知两条线段的装饰费用为4元/米,两条弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为,当为何值时,取得最大值?
如图,四棱锥中,底面是平行四边形,,平面,,,是的中点.(1)求证:平面; (2)若以为坐标原点,射线、、分别是轴、轴、轴的正半轴,建立空间直角坐标系,已经计算得是平面的法向量,求平面与平面所成锐二面角的余弦值.