如图,在四棱锥中,,四边形为平行四边形,,,(1)若为中点,求证:∥平面(2)求三棱锥的体积
(本小题满分14分)水库的储水量随时间而变化,现用t表示时间,以月为单位,以年初为起点,根据历年数据,某水库的储水量(单位:亿立方米)关于t的近似函数关系式为: (1)该水库的储水量小于50的时期称为枯水期。以表示第i个月份(i=1,2,...,12),问:一年内哪几个月份是枯水期?(2)求一年内该水库的最大储水量(取计算)
(本小题满分14分)已知函数其中向量若的图像上相邻两个对称中心的距离大于等于(1)求的取值范围;(2)在中,分别是角的对边,当最大时,求的面积最大值.
(本小题满分14分)如图,在直三棱柱中,、分别是、的中点,点在上,。求证:(1)平面ABC;(2)平面平面.
已知函数,其中为大于零的常数.(Ⅰ)当a=1时,求函数的单调区间,(Ⅱ)求函数在区间[1,2]上的最小值;(Ⅲ)求证:对于任意的n>1时,都有>成立.
已知定理:“若为常数,满足,则函数的图象关于点中心对称”.设函数,定义域为A.(1)试证明的图象关于点成中心对称;(2)当时,求证:;(3)对于给定的,设计构造过程:,…,.如果,构造过程将继续下去;如果,构造过程将停止.若对任意,构造过程可以无限进行下去,求a的值.