(本小题8分)根据下列条件写出直线的方程,并且化成—般式(1)经过点 且倾斜角 ;(2)经过点A(-1,0)和B(2,-3).
已知等差数列的公差不为零,,等比数列的前3项满足.(Ⅰ)求数列与的通项公式;(Ⅱ)设…,是否存在最大整数,使对任意的,均有总成立?若存在,求出的值;若不存在,请说明理由
已知函数处的切线l与直线垂直,函数(Ⅰ)求实数的值;(Ⅱ)若函数存在单调递减区间,求实数的取值范围;(Ⅲ)设是函数的两个极值点,若,求的最小值.
某校高二年级的一次数学考试中,为了分析学生的得分情况,随机抽取名同学的成绩,数据的分组统计表如下:
(1)求出表中的值; (2)为了了解某些同学在数学学习中存在的问题,现从样本中分数在中的6位同学中任意抽取2人进行调查,求分数在和中各有一人的概率.
(本小题满分12分)如图,在斜三棱柱中,侧面与侧面都是菱形,,.(Ⅰ)求证:;(Ⅱ)若,求四棱锥的体积.
【原创】在中,内角的对边分别为.已知=.(1)求的值;(2) 若,的周长为14,求的长.