如图,已知椭圆:,其左右焦点为及,过点的直线交椭圆于两点,线段的中点为,的中垂线与轴和轴分别交于两点,且、、构成等差数列.(1)求椭圆的方程;(2)记△的面积为,△(为原点)的面积为.试问:是否存在直线,使得?说明理由.
(本小题满分13分) 某工厂去年的某产品的年销售量为100万只,每只产品的销售价为10元,每只产品固定成本为8元.今年,工厂第一次投入100万元(科技成本),并计划以后每年比上一年多投入100万元(科技成本),预计销售量从今年开始每年比上一年增加10万只,第n次投入后,每只产品的固定成本为(且n≥0),若产品销售价保持不变,第n次投入后的年利润为万元. (Ⅰ)求出的表达式; (Ⅱ)若今年是第1年,问第几年年利润最高?最高利润为多少万元?
(本小题满分12分) 已知是函数图象的一条对称轴. (Ⅰ)求的值; (Ⅱ)作出函数在上的图象简图(不要求书写作图过程).
(本小题满分12分) 已知集合 (Ⅰ)当=3时,求; (Ⅱ)若,求实数的值.
种植某种树苗,成活率为0.9,若种植这种树苗5棵,求恰好成活4棵的概率的近似值.
一个口袋中有大小相等的5个白球和3个黑球,从中有放回地取出一球,共取两次,试用随机模拟法求取出的球都是白球的概率估计.