在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:Rt△ABE≌Rt△CBF;(2)若∠CAE=30°,求∠ACF度数.
已知一次函数的图象经过点(3,5)与(-4,-9).(1)求这个函数的解析式;(2)判断点A(1,-1)和点B(2.5,4)是否在这个函数的图象上.
△ABC在平面直角坐标系中的位置如右图所示.(1)直接写出点A的坐标;(2)作出△ABC关于轴对称的△,并分别写出点,B1,C1的坐标
(1)解方程:;(2)
老王带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一 些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题. (1)老王自带的零钱是多少?(2)试求降价前y与x之间的关系式.(3)由表达式你能求出降价前每千克的土豆价格是多少?(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?
如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F. (1)求证:OE是CD的垂直平分线. (2)若∠AOB=60º,请你探究OE,EF之间有什么数量关系?并证明你的结论.