设等比数列的首项为公比为为正整数),且满足是与的等差中项;数列满足(1)求数列的通项公式;(2)试确定的值,使得数列为等差数列.
甲、乙等五名奥运志愿者被随机地分到 A , B , C , D 四个不同的岗位服务,每个岗位至少有一名志愿者. (Ⅰ)求甲、乙两人同时参加 A 岗位服务的概率; (Ⅱ)求甲、乙两人不在同一个岗位服务的概率; (Ⅲ)设随机变量 ξ 为这五名志愿者中参加 A 岗位服务的人数,求 ξ 的分布列.
如图,在三棱锥 P - A B C 中, A C = B C = 2 , ∠ A C B = 90 ° , A P = B P = A B , P C ⊥ A C .
(Ⅰ)求证 P C ⊥ A B ; (Ⅱ)求二面角 B - A P - C 的大小; (Ⅲ)求点 C 到平面 A P B 的距离.
(本小题共13分)已知函数()的最小正周期为.(Ⅰ)求的值;(Ⅱ)求函数在区间上的取值范围.
设函数 f ( x ) = ln x 1 + x - ln x + ln ( x + 1 ) . (Ⅰ)求 f ( x ) 的单调区间和极值; (Ⅱ)是否存在实数 a ,使得关于 x 的不等式 f ( x ) ≥ a 的解集为(0,+ ∞ )?若存在,求 a 的取值范围;若不存在,试说明理由.
在数列 a n , b n 中, a 1 = 2 , b 1 = 4 ,且 a n , b n , a n + 1 成等差数列, b n , a n + 1 , b n + 1 成等比数列( n ∈ N * ) (Ⅰ)求 a 2 , a 3 , a 4 及 b 2 , b 3 , b 4 ,由此猜测 a n , b n 的通项公式,并证明你的结论; (Ⅱ)证明: 1 a 1 + b 1 + 1 a 2 + b 2 + . . . + 1 a n + b n < 5 12 .