在△ABC中,a、b、c分别是角A、B、C的对边,向量,,且(1)求角B的大小;(2)设 (),且f(x)的最小正周期为π,求f(x)的单调区间.
已知椭圆的中心在原点,焦点在轴上,离心率为,右焦点到右顶点的距离为.(Ⅰ)求椭圆的标准方程;(Ⅱ)若直线与椭圆交于两点,是否存在实数,使成立?若存在,求的值;若不存在,请说明理由.
已知函数(,).(Ⅰ)当时,求曲线在点处切线的方程;(Ⅱ)求函数的单调区间;(Ⅲ)当时,恒成立,求的取值范围.
如图,在四棱锥中,底面是正方形,侧面底面.(Ⅰ)若,分别为,中点,求证:∥平面;(Ⅱ)求证:;(Ⅲ)若,求证:平面平面.
某市规定,高中学生在校期间须参加不少于80小时的社区服务才合格.某校随机抽取20位学生参加社区服务的数据,按时间段(单位:小时)进行统计,其频率分布直方图如图所示.(Ⅰ)求抽取的20人中,参加社区服务时间不少于90小时的学生人数;(Ⅱ)从参加社区服务时间不少于90小时的学生中任意选取2人,求所选学生的参加社区服务时间在同一时间段内的概率.
在中,,,分别是角的对边.已知,.(1)若,求角的大小;(2)若,求边的长.