某学校一个生物兴趣小组对学校的人工湖中养殖的某种鱼类进行观测研究,在饲料充足的前提下,兴趣小组对饲养时间x(单位:月)与这种鱼类的平均体重y(单位:千克)得到一组观测值,如下表:
(1)在给出的坐标系中,画出关于x、y两个相关变量的散点图. (2)请根据上表提供的数据,用最小二乘法求出变量关于变量的线性回归直线方程. (3)预测饲养满12个月时,这种鱼的平均体重(单位:千克). (参考公式:,)
设二次函数在[3,4]上至少有一个零点,求的最小值。
已知抛物线,过轴上一点的直线与抛物线交于点两点。证明,存在唯一一点,使得为常数,并确定点的坐标。
已知: ,求证:.
已知圆的参数方程为(为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.(Ⅰ)将圆的参数方程化为普通方程,将圆的极坐标方程化为直角坐标方程;(Ⅱ)圆、是否相交,若相交,请求出公共弦的长;若不相交,请说明理由.
如图,已知切⊙于点E,割线PBA交⊙于A、B两点,∠APE的平分线和AE、BE分别交于点C、D.求证:(Ⅰ);(Ⅱ).