已知袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球个.若从袋子中随机抽取1个小球,取到标号为2的小球的概率为.(1)求的值;(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球的标号为,第二次取出的小球的标号为,记“a+b=2”为事件,求事件的概率.
已知数列{bn}是首项为1,公差为2的等差数列,数列{an}的前n项和Sn=nbn.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设,求数列{cn}的前n项和Tn.
已知函数f(x)=(x+a)2+lnx.(1)当a=时,求函数f(x)在[1,+∞)上的最小值;(2)若函数f(x)在[2,+∞)上递增,求实数a的取值范围;(3)若函数f(x)有两个极值点x1、x2,且x1∈(0,),证明:f(x1)﹣f(x2)>﹣ln2.
已知椭圆C:+=1(a>b>0)经过点(1,),椭圆C的离心率e=.(1)求椭圆C的方程;(2)△ABC的三个顶点都在椭圆上,且△ABC的重心是原点O,证明:△ABC的面积是定值.
已知公比不为1的等比数列{an}的首项a1=,前n项和为Sn,且a3+S5,a4+S4,a5+S3成等差数列.(1)求等比数列{an}的通项公式;(2)对n∈N+,在an与an+1之间插入3n个数,使这个3n+2个数成等差数列,记插入的这个3n个数的和为bn,且cn=.求数列{cn}的前n项和Tn.
如图(1),在三角形ABC中,BA=BC=2,∠ABC=90°,点O,M,N分别为线段的中点,将ABO和MNC分别沿BO,MN折起,使平面ABO与平面CMN都与底面OMNB垂直,如图(2)所示.(1)求证:AB∥平面CMN;(2)求平面ACN与平面CMN所成角的余弦;(3)求点M到平面ACN的距离.