(本小题满分12分)已知四棱锥中,平面,底面是边长为的菱形,,.(1)求证:平面平面;(2)设与交于点,为中点,若二面角的正切值为,求的值.
已知a=,且∈.(1)求的最值;(2)若|ka+b|=|a-kb| (k∈R),求k的取值范围.
设a=(cos,sin),b=(cos,sin),且a与b具有关系|ka+b|=|a-kb|(k>0).(1)用k表示a·b;(2)求a·b的最小值,并求此时a与b的夹角.
向量a=(cos23°,cos67°),向量b=(cos68°,cos22°).(1)求a·b;(2)若向量b与向量m共线,u=a+m,求u的模的最小值.
已知a=(cos,sin),b=(cos,sin)(0<<<).(1)求证:a+b与a-b互相垂直;(2)若ka+b与a-kb的模相等,求-.(其中k为非零实数)
A(2,3),B(5,4),C(7,10),=+.当为何值时,(1)点P在第一、三象限的角平分线上;(2)点P到两坐标轴的距离相等?