(本小题14分)已知函数,(1)当时,求的单调递减区间;(2)这直线是曲线的切线,若的斜率存在最小值,求的值,并求取得最小斜率时切线的方程;(3)已知分别在处取得极值,求证:.
已知为数列{}的前项和,且, (Ⅰ)求数列{}的通项公式; (Ⅱ)若数列满足,,求的通项.
已知等比数列中, (Ⅰ)试求的通项公式; (Ⅱ)若数列满足:,试求的前项和公式.
设,求函数的最小值.
已知数列满足,求数列的通项公式.
(本小题满分14分)已知函数(a为实常数)。 (1)若a=1,求的单调区间; (2)若,设在区间的最小值为,求的表达式; (3)设,若函数在区间上是增函数,求实数a的取值范围。