(本小题满分10分)已知都是锐角,.(Ⅰ)求的值;(Ⅱ)求的值.
如图,已知正三棱柱的所有棱长都为2,为棱的中点,(1)求证:平面;(2)求二面角的余弦值大小.
(本题满分10分,选修4-4:极坐标与参数方程)已知圆C的极坐标方程是,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线的参数方程是(t是参数)。若直线与圆C相切,求实数m的值.
(本题满分10分,选修4-2:矩阵与变换)已知二阶矩阵M属于特征值3的一个特征向量为,并且矩阵M对应的变换将点变成点,求出矩阵M.
已知数列中,, 为实常数),前项和恒为正值,且当时,.⑴求证:数列是等比数列;⑵设与的等差中项为,比较与的大小;⑶设是给定的正整数,.现按如下方法构造项数为有穷数列:当时,;当时,.求数列的前项和.
已知函数,设(1)求的单调区间;(2)若以)图像上任意一点为切点的切线的斜率恒成立,求实数的最小值;(3)若对所有的都有成立,求实数的取值范围。