(1)直线在x轴上的截距是-1,在y轴上的截距是4,求此直线方程;(2)求过直线x-2y+3=0和2x+y-4=0的交点,斜率为1 的直线方程。
已知函数f(t)= f ( t ) = 1 - t 1 + t , g ( x ) = c o s x · f ( s i n x ) + s i n x · f ( c o s x ) , x ∈ ( π , 17 π 12 ) .
(Ⅰ)将函数 g ( x ) 化简成 A sin ( ω x + φ ) + B ( A > 0 , ω > 0 , φ ∈ [ 0 , 2 π ] ) 的形式; (Ⅱ)求函数 g ( x ) 的值域。
已知以 a 1 为首项的数列 a n 满足: (1)当 a 1 = 1 , c = 1 , d = 3 时,求数列 a n 的通项公式; (2)当 0 < a 1 < 1 , c = 1 , d = 3 时,试用 a 1 表示数列 a n 的前 100 项的和 S 100 ; (3)当 0 < a 1 < m ( m 是正整数), c = 1 , d ≥ 3 m 时,求证:数列 a 2 , a 3 m + 2 , a 6 m + 2 , a 9 m + 2 成等比数列当且仅当 d = 3 m .
设 P ( a , b ) ( b ≠ 0 ) 是平面直角坐标系 x O y 中的点, l 是经过原点与点 ( 1 , b ) 的直线,记 Q 是直线 l 与抛物线 x 2 = 2 p y ( p ≠ 0 ) 的异于原点的交点 (1)若 a = 1 , b = 2 , p = 2 ,求点 Q 的坐标; (2)若点 P ( a , b ) ( a b ≠ 0 ) 在椭圆 x 2 4 + y 2 = 1 上, p = 1 2 a b ,求证:点 Q 落在双曲线 4 x 2 - 4 y 2 = 1 上; (3)若动点 P ( a , b ) 满足 a b ≠ 0 , p = 1 2 a b ,若点 Q 始终落在一条关于 x 轴对称的抛物线上,试问动点 P 的轨迹落在哪种二次曲线上,并说明理由.
已知函数 f ( x ) = 2 x - 1 2 x . (1)若 f ( x ) = 2 ,求 x 的值; (2)若 2 t f ( 2 t ) + m f ( t ) ≥ 0 对于 t ∈ [ 1 , 2 ] 恒成立,求实数 m 的取值范围.
已知双曲线 C : x 2 4 - y 2 = 1 , P 为 C 上的任意点. (1)求证:点 P 到双曲线 C 的两条渐近线的距离的乘积是一个常数; (2)设点 A 的坐标为 ( 3 , 0 ) ,求 P A 的最小值.