(本小题满分14分)如图,、为椭圆的左、右焦点,、是椭圆的两个顶点,椭圆的离心率,.若在椭圆上,则点称为点的一个“椭点”.直线与椭圆交于、两点, 、两点的“椭点”分别为、.(Ⅰ)求椭圆的标准方程;(Ⅱ)是否存在过左焦点的直线,使得以为直径的圆经过坐标原点?若存在,求出该直线方程,若不存在,是说明理由.
先在甲、乙两个靶.某射手向甲靶射击一次,命中的概率为 3 4 ,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为 2 3 ,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击. (Ⅰ)求该射手恰好命中一次的概率; (Ⅱ)求该射手的总得分 X 的分布列及数学期望 E X .
在如图所示的几何体中,四边形 A B C D 是等腰梯形, A B ∥ C D , ∠ D A B = 60 ° , F C ⊥ 平面 A B C D , A E ⊥ B D , C B = C D .
(Ⅰ)求证: B D ⊥ 平面 A E D ; (Ⅱ)求二面角 F - B D - C 的余弦值.
已知向量 → = m sin x , 1 , → n = 3 A cos x , A 2 cos 2 x A > 0 ,函数 f x = → m . → n 的最大值为. (Ⅰ)求 A ; (Ⅱ)将函数 y = f x 的图象向左平移 π 12 个单位,再将所得图象上各点的横坐标缩短为原来的 1 2 倍,纵坐标不变,得到函数 y = g x 的图象.求 g x 在 0 , 5 π 24 上的值域.
在平面直角坐标系中,以坐标原点 O 为极点, x 轴的正半轴为极轴建立极坐标系。已知直线 l 上两点 M , N 的极坐标分别为(2,0)( 2 3 3 , π 2 ),圆 C 的参数方程 x = 2 + 2 cos θ y = - 3 + 2 sin θ ( θ 为参数 )
(1)设 P 为线段 M N 的中点,求直线 O P 的平面直角坐标方程
(2)判断直线 l 与圆 C 的位置关系
已知函数 f ( x ) = m - | x - 2 | , m ∈ R ,且 f ( x + 2 ) ≥ 0 的解集为 [ - 1 , 1 ] . (Ⅰ)求 m 的值; (Ⅱ)若 a , b , c ∈ R ,且 1 a + 1 2 b + 1 3 c = m ,求证: a + 2 b + 3 c ≥ 9 .