已知函数 f ( x ) = m - | x - 2 | , m ∈ R ,且 f ( x + 2 ) ≥ 0 的解集为 [ - 1 , 1 ] . (Ⅰ)求 m 的值; (Ⅱ)若 a , b , c ∈ R ,且 1 a + 1 2 b + 1 3 c = m ,求证: a + 2 b + 3 c ≥ 9 .
在直角坐标系中,以为圆心的圆与直线相切. (Ⅰ)求圆的方程; (Ⅱ)圆与轴相交于两点,圆内的动点使成等比数列,求的取值范围(结果用区间表示).:
已知函数的最小正周期为. (Ⅰ)求的单调增区间并写出图象的对称中心的坐标; (Ⅱ)求函数在区间上的最大值与最小值.
在中,,. (Ⅰ)求的值; (Ⅱ)设的面积,求的长.
求经过两点,且圆心在轴上的圆的方程.
已知,, 且 (1) 求函数的解析式; (2) 当时, 的最小值是-4 , 求此时函数的最大值, 并求出相应的的值.