已知函数 f ( x ) = m - | x - 2 | , m ∈ R ,且 f ( x + 2 ) ≥ 0 的解集为 [ - 1 , 1 ] . (Ⅰ)求 m 的值; (Ⅱ)若 a , b , c ∈ R ,且 1 a + 1 2 b + 1 3 c = m ,求证: a + 2 b + 3 c ≥ 9 .
若全集,且,,求:A∩B;A∪B
已知椭圆右焦点为,M为椭圆的上顶点,O为坐标原点,且是等腰直角三角形,(1)求椭圆的方程(2)过M分别作直线MA,MB,交椭圆于A,B两点,设两直线的斜率分别为,且,证明:直线AB过定点,并求定点的坐标。
(12分)某市中学生田径运动会总分获得冠、亚、季军的代表队人数如下表,大会组委会为使颁奖仪式有序进行,用分层抽样的方法从三个代表队中抽取16人在前排就座,其中亚军队有5人.(1)求季军队中男运动员的人数(2)从前排就座的亚军队5人(3男2女)中随机抽取2人上台领奖请列出所有的基本事件,并求亚军队中有女生上台领奖的概率;
(12分)抛物线的顶点在坐标原点,焦点在轴的负半轴上,过点作直线与抛物线交于A,B两点,且满足,(1)求抛物线的方程(2)当抛物线上的一动点P从A运动到B时,求面积的的最大值.
(12分)在四棱锥中,底面ABCD是边长为1的正方形,平面ABCD,PA=AB,M,N分别为PB,AC的中点, (1)求证:MN //平面PAD (2)求点B到平面AMN的距离