已知函数 f ( x ) = m - | x - 2 | , m ∈ R ,且 f ( x + 2 ) ≥ 0 的解集为 [ - 1 , 1 ] . (Ⅰ)求 m 的值; (Ⅱ)若 a , b , c ∈ R ,且 1 a + 1 2 b + 1 3 c = m ,求证: a + 2 b + 3 c ≥ 9 .
在△ABC中,角A,B,C的对边分别为a,b,c,且满足(a-c)=c (1)求角B的大小; (2)若||=,求△ABC面积的最大值.
已知数列{an}的首项a1=1,且满足. (1)设,求证:数列{bn}是等差数列,并求数列{an}的通项公式; (2)设cn=bn·2n,求数列{cn}的前n项和Sn.
已知函数f(x)=cosx•sin(x+)﹣cos2x+,x∈R. (1)求f(x)的最小正周期; (2)求f(x)在闭区间[﹣,]上的最大值和最小值.
数列{an}通项公式,前n项和为Sn,则S2015=
设函数 (1)若函数在处有极值,求函数的最大值; (2)是否存在实数,使得关于的不等式在上恒成立?若存在,求出的取值范围;若不存在,说明理由; (3)证明:不等式