(12分)抛物线的顶点在坐标原点,焦点在轴的负半轴上,过点作直线与抛物线交于A,B两点,且满足,(1)求抛物线的方程(2)当抛物线上的一动点P从A运动到B时,求面积的的最大值.
在长方体中,,过,,三点的平面截去长方体的一个角后,得到如图所示的几何体,这个几何体的体积为. (1)证明:直线∥平面; (2)求棱的长; (3)在线段上是否存在点,使直线与垂直,如果存在,求线段的长,如果不存在,请说明理由.
已知数列的各项均为正数,其前项和为,且满足,N. (1)求的值; (2)求数列的通项公式; (3)是否存在正整数, 使, , 成等比数列? 若存在, 求的值; 若不存在, 请说明理由.
在中,,. (Ⅰ)求的值; (Ⅱ)求的值.
如果函数的定义域为,对于定义域内的任意,存在实数使得成立,则称此函数具有“性质”. (1)已知具有“性质”,且当时,求在上的最大值. (2)设函数具有“性质”,且当时,.若与交点个数为2013个,求的值.
已知抛物线的焦点为F2,点F1与F2关于坐标原点对称,以F1,F2为焦点的椭圆C过点 (Ⅰ)求椭圆C的标准方程; (Ⅱ)设点,过点F2作直线与椭圆C交于A,B两点,且,若的取值范围