已知椭圆右焦点为,M为椭圆的上顶点,O为坐标原点,且是等腰直角三角形,(1)求椭圆的方程(2)过M分别作直线MA,MB,交椭圆于A,B两点,设两直线的斜率分别为,且,证明:直线AB过定点,并求定点的坐标。
如图:四棱锥中,,,.∥,.. (Ⅰ)证明: 平面; (Ⅱ)在线段上是否存在一点,使直线与平面成角正弦值等于,若存在,指出点位置,若不存在,请说明理由.
近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查得到了如下的列联表:
已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为. (Ⅰ)请将上面的列联表补充完整; (Ⅱ)是否有的把握认为患心肺疾病与性别有关?说明你的理由; (Ⅲ)已知在患心肺疾病的10位女性中,有3位又患胃病.现在从患心肺疾病的10位女性中,选出3名进行其他方面的排查,记选出患胃病的女性人数为,求的分布列,数学期望以及方差. 下面的临界值表供参考:
(参考公式其中)
在ABC中,所对边分别为,且满足 (Ⅰ)求的值; (Ⅱ)求的值.
已知函数, (1)若函数在处的切线方程为,求实数,的值; (2)若在其定义域内单调递增,求的取值范围.
已知指数函数满足:g(2)=4,定义域为的函数是奇函数。 (1)确定的解析式;(2)求m,n的值; (3)若对任意的,不等式恒成立,求实数的取值范围