(本小题满分14分)已知向量,(其中实数和不同时为零),当时,有,当时,.(1)求函数式;(2)求函数的单调递减区间;(3)若对,都有,求实数的取值范围.
(本题满分13分)如图,棱柱ABCD—A1B1C1D1的所有棱长都等于2,∠ABC=60°,平面AA1C1C⊥平面ABCD,∠A1AC=60°. (Ⅰ)证明:BD⊥AA1; (Ⅱ)求二面角D—A1A—C的平面角的余弦值; (Ⅲ)在直线CC1上是否存在点P,使BP//平面DA1C1?若存在,求出点P的位置;若不存在,说明理由.
(本题满分13分)在一个盒子中,放有标号分别为,,的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为、,记.(1)求随机变量的最大值,并求事件“取得最大值”的概率;(2)求随机变量的分布列和数学期望.
已知数列满足,.(1)试判断数列是否为等比数列,并说明理由;(2)设,求数列的前项和;(3)设,数列的前项和为.求证:对任意的,.
为振兴旅游业,四川省2009年面向国内发行总量为2000万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡)。某旅游公司组织了一个有36名游客的旅游团到四川名胜旅游,其中是省外游客,其余是省内游客。在省外游客中有持金卡,在省内游客中有持银卡。 (Ⅰ)在该团中随机采访2名游客,求恰有1人持银卡的概率; (Ⅱ)在该团中随机采访2名游客,求其中持金卡与持银卡人数相等的概率。
设数列的前项和为,对任意的正整数,都有成立,记. (Ⅰ)求数列与数列的通项公式; (Ⅱ)设数列的前项和为,是否存在正整数,使得成立?若存在,找出一个正整数;若不存在,请说明理由; (Ⅲ)记,设数列的前项和为,求证:对任意正整数都有.