(12分)在四棱锥中,底面ABCD是边长为1的正方形,平面ABCD,PA=AB,M,N分别为PB,AC的中点, (1)求证:MN //平面PAD (2)求点B到平面AMN的距离
(本小题满分12分)已知铁矿石和的含铁率为,冶炼每万吨铁矿石的的排放量及每万吨铁矿石的价格如下表:
某冶炼厂计划至少生产1.9万吨铁,若要求的排放量不超过万吨,求所需费用的最小值,并求此时铁矿石或分别购买多少万吨.
(本小题满分12分)已知正方形的中心在原点,四个顶点都在函数图象上,且正方形的一个顶点为.(Ⅰ)试写出正方形另外三个顶点的坐标,并求,的值;(II)求函数的单调增区间.
(本小题满分12分)解关于的不等式,其中,且.
附加题以数列的任意相邻两项为坐标的点()都在一次函数的图象上,数列满足.(1)求证:数列是等比数列;(2)设数列,的前项和分别为,且,求的值.
(12分)如图,直角三角形ABC的顶点坐标A()、B(0,),顶点C在x轴上,点P为线段OA的中点,设圆M是△ABC的外接圆,若DE是圆M的任意一条直径,试探究是否是定值?若是,求出定值;若不是,请说明理由.