(本小题满分13分)设函数.(Ⅰ)若函数在定义域上为增函数,求实数的取值范围;(Ⅱ)求函数的极值点.
在中,分别为角所对的边,且,,,求角的正弦值.
已知函数(是常数)在处的切线方程为,且. (Ⅰ)求常数的值; (Ⅱ)若函数()在区间内不是单调函数,求实数的取值范围; (Ⅲ)证明:.
已知数列的前项和为,,是与的等差中项(). (Ⅰ)证明数列为等比数列; (Ⅱ)求数列的通项公式; (Ⅲ)是否存在正整数,使不等式()恒成立,若存在,求出的最大值;若不存在,请说明理由.
已知函数,. (Ⅰ)当,时,求的单调区间; (2)当,且时,求在区间上的最大值.
设数列满足:,,. (Ⅰ)求的通项公式及前项和; (Ⅱ)已知是等差数列,为前项和,且,.求的通项公式,并证明:.