(本小题满分12分)设圆C:,此圆与抛物线有四个不同的交点,若在轴上方的两交点分别为,,坐标原点为,的面积为。(1)求实数的取值范围;(2)求关于的函数的表达式及的取值范围。
(本小题满分16分)在数列,中,已知,,且,,成等差数列,,,也成等差数列.(1)求证:是等比数列;(2)设是不超过100的正整数,求使成立的所有数对.
(本小题满分16分)已知函数满足,且当时,,当时,的最大值为.(1)求实数a的值;(2)设,函数,.若对任意,总存在,使,求实数b的取值范围.
(本小题满分16分)如图,在平面直角坐标系中,椭圆的左,右顶点分别为,若直线上有且仅有一个点,使得.(1)求椭圆的标准方程;(2)设圆的圆心在x轴上方,且圆经过椭圆两焦点.点,分别为椭圆和圆上的一动点.若时, 取得最大值为,求实数的值.
(本小题满分14分)如图,有一景区的平面图是一半圆形,其中AB长为2km,C、D两点在半圆弧上,满足BC=CD.设.(1)现要在景区内铺设一条观光道路,由线段AB、BC、CD和DA组成,则当θ为何值时,观光道路的总长l最长,并求l的最大值.(2)若要在景区内种植鲜花,其中在和内种满鲜花,在扇形内种一半面积的鲜花,则当θ为何值时,鲜花种植面积S最大.
如图,边长为2的正方形是圆柱的中截面,点为线段的中点,点为圆柱的下底面圆周上异于,的一个动点.(1)在圆柱的下底面上确定一定点,使得平面; (2)求证:平面平面.