某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.
如图,,AD交BC于点E。有什么关系?为什么?
如图:在平面直角坐标系中A(2,6),B(-1,1),C(4,3).在下图中作出 △ABC关于y轴对称图形△A1B1C1.
如图,△ABC中,AB=AC,AE是外角∠CAD的平分线,求证:AE∥BC
在△ABC中,∠B=∠A+20O,∠C=∠B+20O,求△ABC的三个内角的度数.
已知△ABC中,∠ABC=90゜,AB=BC,点A、B分别是x轴和y轴上的一动点. (1)如图1,若点C的横坐标为4,求点B的坐标; (2)如图2,BC交x轴于D,AD平分∠BAC,若点C的纵坐标为3,A(5,0),求点D的坐标. (3)如图3,分别以OB、AB为直角边在第三、四象限作等腰直角△OBF和等腰直角△ABE,EF交y轴于M,求S△BEM:S△ABO.