我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图),如果大正方形的面积是13,小正方形的面积为1,直角三角形的两直角边分别为a,b,你能求(a+b)2的值吗?若能,求其值;若不能,请说明理由.
如图,抛物线 y = a ( x + 1 ) 2 + 4 ( a ≠ 0 ) 与 x 轴交于 A , C 两点,与直线 y = x − 1 交于 A , B 两点,直线 AB 与抛物线的对称轴交于点 E .
(1)求抛物线的解析式;
(2)若点 P 在直线 AB 上方的抛物线上运动.
①点 P 在什么位置时, ΔABP 的面积最大,求出此时点 P 的坐标;
②当点 P 与点 C 重合时,连接 PE ,将 ΔPEB 补成矩形,使 ΔPEB 上的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,求出矩形未知顶点的坐标.
在 ΔABC 中, AB = AC > BC , D 是 BC 上一点,连接 AD ,作 ΔADE ,使 AD = AE ,且 ∠ DAE = ∠ BAC ,过点 E 作 EF / / BC 交 AB 于 F ,连接 FC .
(1)如图1.
①连接 BE ,求证: ΔAEB ≅ ΔADC :
②若 D 是线段 BC 的中点,且 AC = 6 , BC = 4 ,求 CF 的长;
(2)如图2,若点 D 在线段 BC 的延长线上,且四边形 CDEF 是矩形,当 AC = m , BC = n 时,求 CD 的长(用含 m , n 的代数式表示).
如图,光明中学一教学楼顶上竖有一块高为 AB 的宣传牌,点 E 和点 D 分别是教学楼底部和外墙上的一点 ( A , B , D , E 在同一直线上),小红同学在距 E 点9米的 C 处测得宣传牌底部点 B 的仰角为 67 ° ,同时测得教学楼外墙外点 D 的仰角为 30 ° ,从点 C 沿坡度为 1 : 3 的斜坡向上走到点 F 时, DF 正好与水平线 CE 平行.
(1)求点 F 到直线 CE 的距离(结果保留根号);
(2)若在点 F 处测得宣传牌顶部 A 的仰角为 45 ° ,求出宣传牌 AB 的高度(结果精确到 0 . 01 ) .(注 : sin 67 ° ≈ 0 . 92 , tan 67 ° ≈ 2 . 36 , 2 ≈ 1 . 41 , 3 ≈ 1 . 73 )
四川省安岳县盛产柠檬和柚子两种水果,今年,某公司计划用两种型号的汽车运输柠檬和柚子到外地销售,运输中要求每辆汽车都要满载满运,且只能装运一种水果.若用3辆汽车装载柠檬、2辆汽车装载柚子可共装载33吨,若用2辆汽车装载柠檬、3辆汽车装载柚子可共装载32吨.
(1)求每辆汽车可装载柠檬或柚子各多少吨?
(2)据调查,全部销售完后,每吨柠檬可获利700元、每吨柚子可获利500元,计划用20辆汽车运输,且柚子不少于30吨,如何安排运输才能使公司获利最大,最大利润是多少元?
如图,一次函数 y 1 = kx + b ( k ≠ 0 ) 的图象与反比例函数 y 2 = m x ( m ≠ 0 , x < 0 ) 的图象交于点 A ( − 3 , 1 ) 和点 C ,与 y 轴交于点 B , ΔAOB 的面积是6.
(1)求一次函数与反比例函数的解析式;
(2)当 x < 0 时,比较 y 1 与 y 2 的大小.