如图,光明中学一教学楼顶上竖有一块高为 AB 的宣传牌,点 E 和点 D 分别是教学楼底部和外墙上的一点 ( A , B , D , E 在同一直线上),小红同学在距 E 点9米的 C 处测得宣传牌底部点 B 的仰角为 67 ° ,同时测得教学楼外墙外点 D 的仰角为 30 ° ,从点 C 沿坡度为 1 : 3 的斜坡向上走到点 F 时, DF 正好与水平线 CE 平行.
(1)求点 F 到直线 CE 的距离(结果保留根号);
(2)若在点 F 处测得宣传牌顶部 A 的仰角为 45 ° ,求出宣传牌 AB 的高度(结果精确到 0 . 01 ) .(注 : sin 67 ° ≈ 0 . 92 , tan 67 ° ≈ 2 . 36 , 2 ≈ 1 . 41 , 3 ≈ 1 . 73 )
分解因式:5a3b3-10a2b2+5ab
分解因式:
解不等式组,并把解集表示在数轴上。
苏科版七年级(上册第119页)这样写道: 棱柱的侧棱长相等,棱柱的上下底面是相同的多边形,直棱柱的侧面都是长方形.底面是正三角形的直棱柱叫正三棱柱. 现给出两块面积相同的正三角形纸片(如图1,图2),要求用其中一块剪拼成一个正三棱锥模型,另一块剪拼成一个正三棱柱模型,使它们的全面积都与原三角形的面积相等,请设计一种剪拼方法,分别用虚线标示在图1、图2中,并作简要说明. 如果给出的是一块任意三角形的纸片(如图3),要求剪拼成一个直三棱柱模型,使它的全面积与给出的三角形的面积相等,请设计一种剪拼方法,用虚线标示在图3中,并作简要说明.
如图,平面直角坐标系中,抛物线与轴交于点A、B(点A在 点B左侧),与y轴交于点C,抛物线的顶点为点M,对称轴与线段AC交于点N,点P为线 段AC上一个动点(与A、C不重合) . (1)求点A、B的坐标; (2)在抛物线的对称轴上找一点D,使|DC-DA|的值最大,求点D的坐标; (3)过点P作PQ∥y轴与抛物线交于点Q,连接QM,当四边形PQMN满足有一组对边相等时,求P点的坐标.