如图1,在平面直角坐标系中,点M在x轴的正半轴上,⊙M交x轴 于A、B两点,交y轴C、D于两点,且C为弧AE的中点,AE交y轴于点G,若A点的坐标为(-2,0),CD=8(1)求⊙M的半径 (2)求AE的长(3)如图2,过点D作⊙M的切线,交x轴于点P.动点F在⊙M圆周上运动时,的比值是否发生变化,若不变,求出比值:若不变,请说明变化规律
如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,-2). (1)求反比例函数的解析式; (2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围; (3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论.
2014年1月23日,安徽省省政府新闻办召开新闻发布会,通报了2013年全省经济运行情况。据省统计局新闻发言人赵金宝介绍,去年我省GDP突破19000亿元,连续第十年保持两位数增长,增速明显高于全国,位居中部第一。初步核算,全年全省生产总值19033.3亿元,按可比价格计算,比2011年增加3303.3亿元,连续10年保持两位数增长,增幅居全国第11、中部第1位。求自2011年起的年平均增长率。
图中的小方格都是边长为1的正方形,△ABC的顶点和O点都在正方形的顶点上. (1)以点O为位似中心,在方格图中将△ABC放大为原来的2倍,得到△A′B′C′; (2)△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″C″,并求边A′B′在旋转过程中扫过的图形面积.
如图,AB是⊙O的直径,AM、BN分别切⊙O于点A、B,CD交AM,BN于点D、C,DO平分∠ADC. (1)求证:CD是⊙O的切线; (2)若AD=4,BC=9,求⊙O的半径R.
已知:函数y=ax2﹣(3a+1)x+2a+1(a为常数). (1)若该函数图象与坐标轴只有两个交点,求a的值; (2)若该函数图象是开口向上的抛物线,与x轴相交于点A(x1,0),B(x2,0)两点,与y轴相交于点C,且x2﹣x1=2. ①求抛物线的解析式; ②作点A关于y轴的对称点D,连结BC,DC,求sin∠DCB的值.