如图,椭圆:的右焦点为,右顶点、上顶点分别为点、,且.(1)求椭圆的离心率;(2)若斜率为2的直线过点,且交椭圆于、两点,.求直线的方程及椭圆的方程.
某地为迎接2014年索契冬奥会,举行了一场奥运选拔赛,其中甲、乙两名运动员为争取最后一个参赛名额进行的7轮比赛,其得分情况如茎叶图所示:(1)若从甲运动员的不低于80且不高于90的得分中任选3个,求其中与平均得分之差的绝对值不超过2的概率;(2)若分别从甲、乙两名运动员的每轮比赛不低于80且不高于90的得分中任选1个,求甲、乙两名运动员得分之差的绝对值的分布列与期望.
在如右图的几何体中,四边形为正方形,四边形为等腰梯形,∥,,,.(1)求证:平面;(2)求直线与平面所成角的正弦值.
数列的前项和为,且是和的等差中项,等差数列满足,.(1)求数列、的通项公式;(2)设,数列的前项和为,证明:.
在无穷数列中,,对于任意,都有,. 设, 记使得成立的的最大值为.(1)设数列为1,3,5,7,,写出,,的值;(2)若为等差数列,求出所有可能的数列;(3)设,,求的值.(用表示)
设是椭圆上不关于坐标轴对称的两个点,直线交轴于点(与点不重合),O为坐标原点. (1)如果点是椭圆的右焦点,线段的中点在y轴上,求直线AB的方程; (2)设为轴上一点,且,直线与椭圆的另外一个交点为C,证明:点与点关于轴对称.