已知,数列满足,数列满足;数列为公比大于的等比数列,且为方程的两个不相等的实根.(Ⅰ)求数列和数列的通项公式;(Ⅱ)将数列中的第项,第项,第项,……,第项,……删去后剩余的项按从小到大的顺序排成新数列,求数列的前项和.
为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行分层抽样调查,测得身高情况的统计图如下:(Ⅰ)估计该校男生的人数;(Ⅱ)估计该校学生身高在170~185 cm之间的概率;(Ⅲ)从样本中身高在180~190 cm之间的男生中任选2人,求至少有1人身高在185~190 cm之间的概率.
设数列满足,若数列满足:,且当 时,(I) 求及 ;(II)证明:,(注:).
设椭圆的右焦点为,直线与轴交于点,若(其中为坐标原点).(I)求椭圆的方程;(II)设是椭圆上的任意一点,为圆的任意一条直径(、为直径的两个端点),求的最大值.
如图,四棱锥中,是正三角形,四边形是矩形,且平面平面,,.(Ⅰ) 若点是的中点,求证:平面;(II)若点为线段的中点,求二面角的正切值.
定义在上的函数同时满足以下条件:① 在上是减函数,在上是增函数;② 是偶函数;③ 在处的切线与直线垂直. (I)求函数的解析式;(II)设,若存在,使,求实数的取值范围.