设椭圆的右焦点为,直线与轴交于点,若(其中为坐标原点).(I)求椭圆的方程;(II)设是椭圆上的任意一点,为圆的任意一条直径(、为直径的两个端点),求的最大值.
直线l的方程为(a+1)x+y+2-a=0(aR)。 (1)若l在两坐标轴上的截距相等,求a的值; (2)若l不经过第二象限,求实数a的取值范围。
如图,四棱锥P—ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上。 (1)求证:平面AEC⊥PDB; (2)当PD=AB且E为PB的中点时,求AE与平面PDB所成角的大小。
已知△ABC中,A(1,1),B(m,),C(4,2),1<m<4。 求m为何值时,△ABC的面积S最大。
在锐角△ABC中,a、b、c分别为角A、B、C所对的边,又c=,b=4,且BC边上的高h=。 (1)求角C; (2)求边a。
选修4—5:不等式选讲 已知,若不等式恒成立,求实数的取值范围.