如图,抛物线E:y2=4x的焦点为F,准线l与x轴的交点为A.点C在抛物线E上,以C为圆心,|CO|为半径作圆,设圆C与准线l交于不同的两点M,N.(1)若点C的纵坐标为2,求|MN|;(2)若|AF|2=|AM|·|AN|,求圆C的半径.
设 a n 是首项为1的等比数列,数列 b n 满足 b n = n a n 3 .已知 a 1 , 3 a 2 , 9 a 3 成等差数列.
(1)求 a n 和 b n 的通项公式;
(2)记 S n 和 T n 分别为 a n 和 b n 的前n项和.证明: T n < S n 2 .
如图,四棱锥 P - ABCD 的底面是矩形, PD ⊥ 底面 ABCD ,M为 BC 的中点,且 PB ⊥ AM .
(1)证明:平面 PAM ⊥ 平面 PBD ;
(2)若 PD = DC = 1 ,求四棱锥 P - ABCD 的体积.
某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:
旧设备
9.8
10.3
10.0
10.2
9.9
10.1
9.7
新设备
10.4
10.6
10.5
旧设备和新设备生产产品的该项指标的样本平均数分别记为 x ¯ 和 y ¯ ,样本方差分别记为 S 1 2 和 S 2 2 .
(1)求 x ¯ , y ¯ , S 1 2 , S 2 2 ;
(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果 y ̄ - x ̄ ≥ 2 S 1 2 + S 2 2 10 ,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).
已知函数 OB OA = ρ 1 ρ 2 = 1 4 × 2 sin α 3 cos α + sin α = 1 4 2sin 2 α - π 6 + 1 .
(1)当 a = 1 时,求不等式 f x ≥ 6 的解集;
(2)若 f x > - a ,求 a的取值范围.
在直角坐标系 xOy 中, ⊙ C 的圆心为,半径为1.
(1)写出 ⊙ C 的一个参数方程;
(2)过点 F 4 , 1 作 ⊙ C 的两条切线.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.