如图,椭圆的中心为原点O,长轴在x轴上,离心率e=,过左焦点F1作x轴的垂线交椭圆于A、A′两点,=4.(1)求该椭圆的标准方程;(2)取平行于y轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.求△PP′Q的面积S的最大值,并写出对应的圆Q的标准方程.
已知椭圆的一个顶点是,离心率为. (Ⅰ)求椭圆的方程; (Ⅱ)已知矩形的四条边都与椭圆相切,设直线AB方程为,求矩形面积的最小值与最大值.
如图, 已知边长为2的的菱形与菱形全等,且,平面平面,点为的中点. (Ⅰ)求证:平面; (Ⅱ)求证:; (Ⅲ)求三棱锥的体积.
某校高三年级共有300人参加数学期中考试,从中随机抽取4名男生和4名女生的试卷,获得某一道题的样本,该题得分的茎叶图如图。 (Ⅰ)求样本的平均数; (Ⅱ)设该题得分大于样本的平均数为合格,根据样本数据估计该校高三年级有多少名同学此题成绩合格; (Ⅲ)在这4名男生和4名女生中,分别随机抽取一人,求该题女生得分不低于男生得分的概率.
已知数列为等差数列,且. (Ⅰ)求数列的通项; (Ⅱ)设,求数列的前项和.
已知,. (Ⅰ)求的值; (Ⅱ)求函数的增区间.