如图,椭圆的中心为原点O,长轴在x轴上,离心率e=,过左焦点F1作x轴的垂线交椭圆于A、A′两点,=4.(1)求该椭圆的标准方程;(2)取平行于y轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.求△PP′Q的面积S的最大值,并写出对应的圆Q的标准方程.
如图,F1,F2是离心率为的椭圆C:(a>b>0)的左、右焦点,直线:x=-将线段F1F2分成两段,其长度之比为1:3.设A,B是C上的两个动点,线段AB的中垂线与C交于P,Q两点,线段AB的中点M在直线l上. (Ⅰ)求椭圆C的方程; (Ⅱ)求的取值范围.
如图,平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2. (Ⅰ)求异面直线EF与BC所成角的大小; (Ⅱ)若二面角A-BF-D的平面角的余弦值为,求AB的长.
如图,已知曲线C:y=x2(0≤x≤1),O(0,0),Q(1,0),R(1,1).取线段OQ的中点A1,过A1作x轴的垂线交曲线C于P1,过P1作y轴的垂线交RQ于B1,记a1为矩形A1P1B1Q的面积.分别取线段OA1,P1B1的中点A2,A3,过A2,A3分别作x轴的垂线交曲线C于P2,P3,过P2,P3分别作y轴的垂线交A1P1,RB1于B2,B3,记a2为两个矩形A2P2B2 A1与矩形A3P3B3B1的面积之和.以此类推,记an为2n-1个矩形面积之和,从而得数列{an},设这个数列的前n项和为Sn. (I)求a2与an; (Ⅱ)求Sn,并证明Sn<.
在△ABC中,内角A,B,C满足4sinAsinC-2cos(A-C)=1. (Ⅰ)求角B的大小; (Ⅱ)求sinA+2sinC的取值范围.
已知函数,若函数为奇函数,求的值. (2)若,有唯一实数解,求的取值范围. (3)若,则是否存在实数,使得函数的定义域和值域都为。若存在,求出的值;若不存在,请说明理由.