设函数,其中.(1)若函数图象恒过定点P,且点P关于直线的对称点在的图象上,求m的值;(2)当时,设,讨论的单调性;(3)在(1)的条件下,设,曲线上是否存在两点P、Q,使△OPQ(O为原点)是以O为直角顶点的直角三角形,且斜边的中点在y轴上?如果存在,求a的取值范围;如果不存在,说明理由.
各项均为正数的数列{}中,a1=1,是数列{}的前n项和,对任意n∈N﹡,有2=2p+p-p(p∈R). (1)求常数p的值; (2)求数列{}的前n项和.
已知函数f(x)=2sin(ωx+)(ω>0,0<<π)的图象如图所示. (1)求函数f(x)的解析式: (2)已知=,且a∈(0,),求f(a)的值.
已知a,b,c分别为△ABC的三个内角A,B,C的对边,=(sinA,1),=(cosA,),且∥. (1)求角A的大小; (2)若a=2,b=2,求△ABC的面积.
设全集U=R,A={y|y=},B={x|y=ln(1-2x)}. (1)求A∩(CUB); (2)记命题p:x∈A,命题q:x∈B,求满足“p∧q”为假的x的取值范围.
设函数f(x)=+,g(x)=ln(2ex)(其中e为自然对数的底数) (1)求y=f(x)-g(x)(x>0)的最小值; (2)是否存在一次函数h(x)=kx+b使得f(x)≥h(x)且h(x)≥g(x)对一切x>0恒成立;若存在,求出一次函数的表达式,若不存在,说明理由: 3)数列{}中,a1=1,=g()(n≥2),求证:<<<1且<.