选修4-1:几何证明选讲已知中,,D是外接圆劣弧上的点(不与点A,C重合),延长BD至E.(1)求证:AD的延长线平分CDE;(2)若,中BC边上的高为2+,求外接圆的面积.
(本小题满分12分)已知函数(为实常数)(Ⅰ)若函数为奇函数,求此函数的单调区间;(Ⅱ)记,当,试讨论函数的图象与函数的图象的交点个数.
(本小题满分12分)已知函数 (I)求的值;(II)解不等式:
(本小题满分12分)某公司是否对某一项目投资,由甲、乙、丙三位决策人投票决定.他们三人都有“同意”、“中立”、“反对”三类票各一张.投票时,每人必须且只能投一张票,每人投三类票中的任何一类票的概率都为,他们的投票相互没有影响.规定:若投票结果中至少有两张“同意”票,则决定对该项目投资;否则,放弃对该项目投资.(Ⅰ)求此公司决定对该项目投资的概率(Ⅱ)求此公司放弃对该项目投资且投票结果中最多有一张“中立”票的概率。
(本小题满分12分)如图,四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=BC=2,E为PA的中点,过E作平行于底面的平面EFGH,分别与另外三条侧棱相交于点F、G、H. 已知底面ABCD为直角梯形,AD∥BC,AB⊥AD,∠BCD=135°. (1)求异面直线AF与BG所成的角的大小; (2)求平面APB与平面CPD所成的锐二面角的大小.
如图,在四棱锥 O - A B C D 中,底面 A B C D 四边长为1的菱形, ∠ A B C = π 4 , O A ⊥ 底面 A B C D , O A = 2 , M 为 O A 的中点, N 为 B C 的中点.
(Ⅰ)证明:直线 M N / / 平面 O C D ; (Ⅱ)求异面直线 A B 与 M D 所成角的大小; (Ⅲ)求点 B 到平面 O C D 的距离.