在以为原点的直角坐标系中,点为的直角顶点,若,且点的纵坐标大于0(1)求向量的坐标;(2)是否存在实数,使得抛物线上总有关于直线对称的两个点?若存在,求实数的取值范围,若不存在,说明理由;
(理科)已知双曲线的离心率为,右准线方程为 (Ⅰ)求双曲线的方程; (Ⅱ)设直线是圆上动点处的切线,与双曲线交于不同的两点,证明的大小为定值.
(文科)已知椭圆()的四个顶点恰好是一边长为,一内角为的菱形的四个顶点. (1)求椭圆的方程; (2)直线与椭圆交于,两点,且线段的垂直平分线经过点,求(为原点)面积的最大值.
(理科)已知椭圆的离心率,连接椭圆的四个顶点得到的菱形的面积为4。 (1)求椭圆的方程; (2)设直线与椭圆相交于不同的两点,已知点的坐标为(),点在线段的垂直平分线上,且,求的值
(文科)设椭圆的左、右焦点分别为,上顶点为,在轴负半轴上有一点,满足,且. (Ⅰ)求椭圆的离心率; (Ⅱ)若过三点的圆与直线相切,求椭圆的方程; (Ⅲ)在(Ⅱ)的条件下,过右焦点作斜率为的直线与椭圆交于两点,线段的中垂线与轴相交于点,求实数的取值范围.
(理科)在平面直角坐标系中,点为动点,分别为椭圆的左右焦点.已知△为等腰三角形. (Ⅰ)求椭圆的离心率; (Ⅱ)设直线与椭圆相交于两点,是直线上的点,满足,求点的轨迹方程.