在各项均为正数的数列中,前项和满足。(1)证明是等差数列,并求这个数列的通项公式及前项和的公式;(2)在平面直角坐标系面上,设点满足,且点在直线上,中最高点为,若称直线与轴、直线所围成的图形的面积为直线在区间上的面积,试求直线在区间上的面积;(3)求出圆心在直线上的圆,使得点列中任何一个点都在该圆内部
一次考试中,五名学生的数学、物理成绩如下表所示: (1)要从 5 名学生中选2 人参加一项活动,求选中的学生中至少有一人的物理成绩高于90分的概率; (2)请在所给的直角坐标系中画出它们的散点图,并求这些数据的线性回归方程 .(附:回归直线的方程是 : , 其中)
已知函数,.(1)求的值;(2)设,,,求的值.
已知数列的前项和为 ,对于任意的恒有 (1) 求数列的通项公式 (2)若证明:
已知 函数(1)已知任意三次函数的图像为中心对称图形,若本题中的函数图像以为对称中心,求实数和的值(2)若,求函数在闭区间上的最小值
在平面直角坐标系中,已知,直线, 动点到的距离是它到定直线距离的倍. 设动点的轨迹曲线为. (1)求曲线的轨迹方程. (2)设点, 若直线为曲线的任意一条切线,且点、到的距离分别为,试判断是否为常数,请说明理由.