在各项均为正数的数列中,前项和满足。(1)证明是等差数列,并求这个数列的通项公式及前项和的公式;(2)在平面直角坐标系面上,设点满足,且点在直线上,中最高点为,若称直线与轴、直线所围成的图形的面积为直线在区间上的面积,试求直线在区间上的面积;(3)求出圆心在直线上的圆,使得点列中任何一个点都在该圆内部
(本小题满分13分) 已知两个向量,f(x)= , (1)求f(x)的值域;(2)若,求的值
(本小题满分12分)已知数列为方向向量的直线上,(I)求数列的通项公式; (II)求证:(其中e为自然对数的底数); (III)记 求证:
(本小题满分12分)已知双曲线,焦点F2到渐近线的距离为,两条准线之间的距离为1。(I)求此双曲线的方程;(II)过双曲线焦点F1的直线与双曲线的两支分别相交于A、B两点,过焦点F2且与AB平行的直线与双曲线分别相交于C、D两点,若A、B、C、D这四点依次构成平行四边形ABCD,且,求直线AB的方程。
(本小题满分13分)某企业准备招聘一批大学生到本单位就业,但在签约前要对他们的某项专业技能进行测试。在待测试的某一个小组中有男、女生共10人(其中女生人数多于男生人数),如果从中随机选2人参加测试,其中恰为一男一女的概率为(I)求该小组中女生的人数;(II)假设此项专业技能测试对该小组的学生而言,每个女生通过的概率均为,每个男生通过的概率均为,现对该小组中男生甲、男生乙和女生丙3个人进行测试,记这3人中通过测试的人数为随机变量,求的分布列和数学期望。
(本小题满分13分) 如图,已知正方形ABCD和梯形ACEF所在的平面互相垂直,,CE//AF, (I)求证:CM//平面BDF; (II)求异面直线CM与FD所成角的大小; (III)求二面角A—DF—B的大小。