(本小题满分12分)已知双曲线,焦点F2到渐近线的距离为,两条准线之间的距离为1。 (I)求此双曲线的方程; (II)过双曲线焦点F1的直线与双曲线的两支分别相交于A、B两点,过焦点F2且与AB平行的直线与双曲线分别相交于C、D两点,若A、B、C、D这四点依次构成平行四边形ABCD,且,求直线AB的方程。
已知函数f(x)=ln(x+1),g(x)=. (1)求h(x)=f(x)﹣g(x)的单调区间; (2)求证:f2(x)≤xg(x).
数列{an}满足a1=2,an+1=an2+6an+6(n∈N×) (Ⅰ)设Cn=log5(an+3),求证{Cn}是等比数列; (Ⅱ)求数列{an}的通项公式; (Ⅲ)设,数列{bn}的前n项的和为Tn,求证:.
如图,在四棱锥S﹣ABCD中,底面ABCD是正方形,其他四个侧面都是等边三角形,AC与BD的交点为O,E为侧棱SC上一点. (Ⅰ)当E为侧棱SC的中点时,求证:SA∥平面BDE; (Ⅱ)求证:平面BDE⊥平面SAC; (Ⅲ)(理科)当二面角E﹣BD﹣C的大小为45°时,试判断点E在SC上的位置,并说明理由.
已知圆C:x2+y2+2x﹣4y+3=0. (1)若圆C的切线在x轴、y轴上的截距相等,求切线方程; (2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M且有|PM|=|PO|(O为原点),求使|PM|取得最小值时点P的坐标.
已知关于x的一元二次方程x2﹣2(a﹣2)x﹣b2+16=0 (1)若a,b是一枚骰子掷两次所得到的点数,求方程有两正根的概率. (2)若a∈[2,6],b∈[0,4],求方程没有实根的概率.