(本小题满分12分)从某小区抽取100户居民进行月用电量调查,发现其用电量都在50度至350度之间,频率分布直方图如图所示.(1)根据直方图求的值,并估计该小区100户居民的月均用电量(同一组中的数据用该组区间的中点值作代表);(2)从该小区已抽取的100户居民中,随机抽取月用电量超过250度的3户,参加节约用电知识普及讲座,其中恰有户月用电量超过300度,求的分布列及期望.
求函数的导数。
设分别为椭圆的左、右两个焦点,若椭圆C上的点A(1,)到F1,F2两点的距离之和等于4. (1)写出椭圆C的方程和焦点坐标; (2)过点P(1,)的直线与椭圆交于两点D、E,若DP=PE,求直线DE的方程; (3)过点Q(1,0)的直线与椭圆交于两点M、N,若△OMN面积取得最大,求直线MN的方程.
已知函数f(x)=alnx+bx,且f(1)= -1,f′(1)=0, (1)求f(x); (2)求f(x)的最大值; (3)x>0,y>0,证明:lnx+lny≤.
数列{an}满足a1+2a2+22a3+…+2n-1an=4n. (1)求通项an; (2)求数列{an}的前n项和 Sn.