(本小题满分12分) 已知正三棱柱ABC-A1B1C1的各条棱长都为a,P为A1B上的点,且PC⊥AB. (Ⅰ)求二面角P-AC-B的正切值; (Ⅱ)求点B到平面PAC的距离.
已知函数(均为正常数),设函数在处有极值.(1)若对任意的,不等式总成立,求实数的取值范围;(2)若函数在区间上单调递增,求实数的取值范围.
已知数列为等差数列,数列为等比数列且公比大于1,若,,且恰好是一各项均为正整数的等比数列的前三项.(1)求数列,的通项公式;(2)设数列满足,求.
如图,在直三棱柱中,,点分别为和的中点.(1)证明:平面;(2)求和所成的角.
设不等式的解集为M.(1)如果,求实数的取值范围;(2)如果,求实数的取值范围.
已知函数(Ⅰ)当时,求函数的单调区间;(Ⅱ)若,对定义域内任意x,均有恒成立,求实数a的取值范围?(Ⅲ)证明:对任意的正整数,恒成立。