一个盒子中装有5个编号依次为1、2、3、4、5的球,这5个球除号码外完全相同,有放回的连续抽取两次,每次任意地取出一个球。(1)求事件A=“取出球的号码之和不小于6”的概率。(2)设第一次取出的球号码为x,第二次取出的球号码为y,求事件B=“点(x,y)落在直线y =" x+1" 上方”的概率。
在平面直角坐标系xOy中,点P在角α的终边上,点Q(sin2θ,-1)在角β的终边上,且·=-.(1)求cos2θ的值;(2)求sin(α+β)的值.
已知0<α<,0<β<,且3sinβ=sin(2α+β),4tan=1-tan2,求α+β的值.
已知函数f(x)=2cos2x+sin2x-4cosx.(1)求f()的值;(2)求f(x)的最大值和最小值.
是否存在锐角α、β,使得(1)α+2β=,(2)tan·tanβ=2-同时成立?若存在,求出锐角α、β的值;若不存在,说明理由.
设tanα,tanβ是方程ax2-(2a+1)x+(a+2)=0的两根,求证:tan(α+β)的最小值是-.