一个盒子中装有5个编号依次为1、2、3、4、5的球,这5个球除号码外完全相同,有放回的连续抽取两次,每次任意地取出一个球。(1)求事件A=“取出球的号码之和不小于6”的概率。(2)设第一次取出的球号码为x,第二次取出的球号码为y,求事件B=“点(x,y)落在直线y =" x+1" 上方”的概率。
设a为实数,函数,x∈R,试讨论f(x)的奇偶性,并求f(x)的最小值.
f(x)是定义在R上的奇函数,且当x<0时,f(x)=,求当x0时,f(x)的解析式.
已知A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A∩B=,求a的取值范围.
设U={x∈Z|0<x≤10},A={1,2,4,5,9},B={4,6,7,8,10},求A∩B,A∪B, 。
已知,(1)用列举法表示集合A;(2)写出集合A的所有子集