设U={x∈Z|0<x≤10},A={1,2,4,5,9},B={4,6,7,8,10},求A∩B,A∪B, 。
本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分. 从数列中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列的一个子数列. 设数列是一个首项为、公差为的无穷等差数列. (1)若,,成等比数列,求其公比. (2)若,从数列中取出第2项、第6项作为一个等比数列的第1项、第2项,试问该数列是否为的无穷等比子数列,请说明理由. (3)若,从数列中取出第1项、第项(设)作为一个等比数列的第1项、第2项.求证:当为大于1的正整数时,该数列为的无穷等比子数列.
本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分. 已知椭圆:(),其左、右焦点分别为、,且、、成等比数列. (1)求的值. (2)若椭圆的上顶点、右顶点分别为、,求证:. (3)若为椭圆上的任意一点,是否存在过点、的直线,使与轴的交点满足?若存在,求直线的斜率;若不存在,请说明理由.
本题共有2个小题,第1小题满分8分,第2小题满分8分. 如图,反比例函数()的图像过点和,点为该函数图像上一动点,过分别作轴、轴的垂线,垂足为、.记四边形(为坐标原点)与三角形的公共部分面积为. (1)求关于的表达式; (2)求的最大值及此时的值.
本题共有2个小题,第1小题满分6分,第2小题满分8分. 在长方体中,,过、、三点的平面截去长方体的一个角后,得到如图所示的几何体,且这个几何体的体积为. (1)求棱的长; (2)若的中点为,求异面直线与所成角的大小(结果用反三角函数值表示).
已知关于的实系数一元二次方程有两个虚根,,且(为虚数单位),,求实数的值.