设U={x∈Z|0<x≤10},A={1,2,4,5,9},B={4,6,7,8,10},求A∩B,A∪B, 。
解不等式.
已知函数的图像与直线有且仅有三个交点,交点的横坐标的最大值为,求证: .
设,.证明:当且仅当时,存在数列满足以下条件: (ⅰ),; (ⅱ)存在; (ⅲ),.
求满足下列关系式组的正整数解组的个数.
如题一图,是圆内接四边形.与的交点为,是弧上一点,连接并延长交于点,点分别在,的延长线上,满足,,求证:四点共圆.