若点,在中按均匀分布出现.(1)点横、纵坐标分别由掷骰子确定,第一次确定横坐标,第二次确定纵坐标,则点落在上述区域的概率?(2)试求方程有两个实数根的概率.
如图,在四棱锥中,,四边形为平行四边形,,,(1)若为中点,求证:∥平面(2)求三棱锥的体积
已知函数(1)若,且,求的值;(2)求函数的最小正周期及单调递增区间.
(Ⅰ)求直线:与两坐标轴所围成的三角形的内切圆的方程;(Ⅱ)若与(Ⅰ)中的圆相切的直线交轴轴于和两点,且.①求证:圆与直线相切的条件为;②求OAB面积的最小值及此时直线的方程.
(本小题满分14分)已知两圆和(1)m取何值时,两圆外切; (2)m取何值时,两圆内切;(3)求m=45时两圆的公共弦所在直线的方程和公共弦的长.
已知圆C经过A(3,2),B(1,6)圆心在直线y=2x上。(1)求圆C方程;(2)若直线 x+2y+m=0与圆C相交于M、N两点,且∠MAN=600,求m的值。