设z=lg(-2m-2)+(+3m+2)i,m∈R,当m为何值时,z分别满足:(1)是实数; (2)是纯虚数; (3)z>0.
已知A(-5,0),B(5,0),动点P满足||,||,8成等差数列. (1)求P点的轨迹方程; (2)对于x轴上的点M,若满足||·||=,则称点M为点P对应的“比例点”.问:对任意一个确定的点P,它总能对应几个“比例点”?
已知函数f(x)=-(a+2)x+lnx.(1)当a=1时,求曲线y=f(x)在点(1,f (1))处的切线方程;(2)当a>0时,若f(x)在区间[1,e)上的最小值为-2,求a的取值范围.
在△ABC中,A、B、C为三个内角,a、b、c为相应的三条边,<C<,且=. (1)判断△ABC的形状; (2)若|+|=2,求·的取值范围.
已知各项均为正数的数列{}满足--2=0,n∈N﹡,且是a2,a4的等差中项.(1)求数列{}的通项公式;(2)若=,=b1+b2+…+,求的值.
已知α,β为锐角,且sinα=,tan(α-β)=-.求cosβ的值.