如图,直角坐标系中,点的坐标为,以线段为边在第四象限内作等边,点为正半轴上一动点,连结,以线段为边在第四象限内作等边,直线交轴于点.(1)与全等吗?判断并证明你的结论;(2)将等边沿轴翻折,点的对称点为.①点会落在直线上么?请说明理由;②随着点位置的变化,点的位置是否会发生变化? 若没有变化,请直接写出点,若有变化,请说明理由.
解方程:.
在图1、图2、图3、图4中,点P在线段BC上移动(不与B、C重合),M在BC的延长线上. (1)如图1,△ABC和△APE均为正三角形,连接CE. ①求证:△ABP≌△ACE. ②∠ECM的度数为 °. (2)①如图2,若四边形ABCD和四边形APEF均为正方形,连接CE.则∠ECM的度数为 °. ②如图3,若五边形ABCDF和五边形APEGH均为正五边形,连接CE.则∠ECM的度数为 °. (3)如图4,n边形ABC…和n边形APE…均为正n边形,连接CE,请你探索并猜想∠ECM的度数与正多边形边数n的数量关系(用含n的式子表示∠ECM的度数),并利用图4(放大后的局部图形)证明你的结论.
如图,已知抛物线图象经过A(-1,0),B(4,0)两点. (1)求抛物线的解析式; (2)若C(m,m-1)是抛物线上位于第一象限内的点,D是线段AB上的一个动点(不与A、B重合),过点D分别作DE∥BC交AC于E,DF∥AC交BC于F. ①求证:四边形DECF是矩形; ②连结EF,线段EF的长是否存在最小值?若存在,求出EF的最小值;若不存在,请说明理由.
如图,已知反比例函数y=与一次函数y=kx+b的图象相交于A(4,1)、B(a,2)两点,一次函数的图象与y轴的交点为C. (1)求反比例函数和一次函数的解析式; (2)若点D的坐标为(1,0),求△ACD的面积.
如图,已知直线AB经过⊙O上的点C,且OA=OB,CA=CB. (1)求证:直线AB是⊙O的切线. (2)若∠A=34°,AC=6,求⊙O的周长.(结果精确到0.01)