为了进一步落实“节能减排”措施,冬季供暖来临前,某单位决定对9000平方米的“外墙保温”工程进行招标,现有甲、乙两个工程队参与投标,比较这两个工程队的标书发现:乙队每天完成的工程量是甲队的1.5倍,这样乙队单独干比甲队单独干能提前15天完成任务.问甲队每天完成多少平方米?
如图1,在平面直角坐标系中,A(,0),B(0,),且、满足.(1)求直线AB的解析式;(2)若点M为直线在第一象限上一点,且△ABM是等腰直角三角形,求的值.(3)如图3过点A的直线交轴负半轴于点P,N点的横坐标为-1,过N点的直线交AP于点M,给出两个结论:①的值是不变;②的值是不变,只有一个结论是正确,请你判断出正确的结论,并加以证明和求出其值。
已知△ABC是等边三角形,点P是AC上一点,PE⊥BC于点E,交AB于点F,在CB的延长线上截取BD=PA,PD交AB于点I,. (1)如图1,若,则= ,= ; (2)如图2,若∠EPD=60º,试求和的值; (3)如图3,若点P在AC边的延长线上,且,其他条件不变,则= .(只写答案不写过程)
某公司有型产品40件,型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:
(1)设分配给甲店型产品件,这家公司卖出这100件产品的总利润为(元),求关于的函数关系式,并求出的取值范围;(2)若公司要求总利润不低于17560元,有多少种不同分配方案,哪种方案总利润最大,并求出最大值。
如图所示,已知△ABC中,点D为BC边上一点,∠1=∠2=∠3,AC=AE,(1)求证:△ABC≌△ADE(2)若AE∥BC,且∠E= ∠CAD,求∠C的度数。
如图,在平面直角坐标系中,函数的图象是第一、三象限的角平分线.(1)实验与探究:由图观察易知A(0,2)关于直线的对称点的坐标为(2,0),请在图中分别标明B(5,3) 、C(-2,5) 关于直线的对称点、的位置,并写出它们的坐标: 、 ;(2)归纳与发现:结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(m,n)关于第一、三象限的角平分线的对称点的坐标为 ;(3)运用与拓广:已知两点D(0,-3)、E(-1,-4),试在直线上确定一点Q,使点Q到D、E两点的距离之和最小,并求出Q点坐标.