已知椭圆的离心率为,椭圆的左、右两个顶点分别为,,直线与椭圆相交于两点,经过三点的圆与经过三点的圆分别记为圆C1与圆C2.(1)求椭圆的方程;(2)求证:无论如何变化,圆C1与圆C2的圆心距是定值;(3)当变化时,求圆C1与圆C2的面积的和的最小值.
的内角、、的对边分别为、、,已知,求。
已知数列{an}的前n项和,且Sn的最大值为8.(1)确定常数k,求an;(2)求数列的前n项和Tn。
已知函数。(1)求的定义域及最小正周期;(2)求的单调递增区间。
已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和.(Ⅰ)求X的分布列;(Ⅱ)求X的数学期望E(X).
已知定义域为的函数是奇函数。(Ⅰ)求的值;(Ⅱ)若对任意的,不等式恒成立,求的取值范围;