如图,将圆分成n个区域,用3种不同颜色给每一个区域染色,要求相邻区域颜色互异,把不同的染色方法种数记为。求(1)及与的关系式;(2)数列的通项公式,并证明:
由原点向三次曲线引切线,切于不同于点的点,再由引此曲线的切线,切于不同于的点,如此继续地作下去,……,得到点列,试回答下列问题: ⑴求; (2)求与的关系式; (3)若,求证:当为正偶数时,;当为正奇数时,.
夏季高山上的温度从脚起,每升高,降低℃,已知山顶处的温度是℃,山脚处的温度为℃,问此山相对于山脚处的高度是多少米.
数列首项,前项和与之间满足 (1)求证:数列是等差数列(2)求数列的通项公式 (3)设存在正数,使对于一切都成立,求的最大值。
四个实数,前三个数成等比数列,其和为19,后三个数成等差数列,其和为12,求原来的四个数.
2008年底某县的绿化面积占全县总面积的%,从2009年开始,计划每年将非绿化面积的8%绿化,由于修路和盖房等用地,原有绿化面积的2%被非绿化. ⑴设该县的总面积为1,2008年底绿化面积为,经过年后绿化的面积为,试用表示; ⑵求数列的第项; ⑶至少需要多少年的努力,才能使绿化率超过60%(参考数据:)