已知在中,分别是角的对边,,且满足(1)求角的大小; (2)若,求的长。
设函数,若, 求使成立的的取值范围.
(1)推导关于的表达式; (2)利用(1)的结论求的值.
已知等比数列的首项为,公比为,前项和为,其中最大的一项为,又它的前项和为,求首项和公比.
(本小题满分12分) 数列满足,是常数. (1)数列是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由; (2)求的取值范围,使得存在正整数,当时总有.
(本小题满分12分) 已知、分别是直线和上的两个动点,线段的长为,是的中点. (1)求动点的轨迹的方程; (2)过点作直线(与轴不垂直)与轨迹交于两点,与轴交于点.若,,证明:为定值.