(本小题满分14分)如图,线段MN的两个端点M.N分别在x轴.y 轴上滑动,,点P是线段MN上一点,且,点P随线段MN的运动而变化.(1)求点P的轨迹C的方程;(2)过点(2,0)作直线,与曲线C交于A.B两点,O是坐标原点,设 是否存在这样的直线,使四边形的对角线相等(即)?若存在,求出直线的方程;若不存在,试说明理由.
设M是圆上的动点,O是原点,N是射线OM上的点,若,求点N的轨迹方程。
已知a,b,c是全不相等的正实数,求证。
设复数|z-i|="1," 且z¹0, z¹2i. 又复数w使为实数,问复数w在复平面上所对应的点Z的集合是什么图形,并说明理由。
已知函数满足下列条件:对任意的实数x1,x2都有 λ和,其中λ是大于0的 常数.实数a0,a,b满足 和b=a-λf(a). (Ⅰ)证明:λ≤1,并且不存在,使得; (Ⅱ)证明: (b-a0)2≤(1-λ2)(a-a0)2; (Ⅲ)证明: [f(b)]2≤(1-λ2)[f(a)]2.
在对人们休闲的一次调查中,共调查了124人,其中女性70人,男性54人。女性中有43人主要的休闲方式是看电视,另外27人的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动。 (1)根据以上数据建立一个2×2的列联表; (2)画出三维柱形图和二维条形图; (3)检验性别是否与休闲方式有关,可靠性有多大。